4.6 Article

Excitotoxin-induced caspase-3 activation and microtubule disintegration in axons is inhibited by taxol

Journal

ACTA NEUROPATHOLOGICA COMMUNICATIONS
Volume 1, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/2051-5960-1-59

Keywords

Axon degeneration; Caspase; Excitotoxicity; Taxol; Microtubule

Categories

Funding

  1. Motor Neuron Disease Research Institute of Australia
  2. Alzheimer's Australia Research
  3. National Health and Medical Research Council [APP1003931]
  4. JO and JR Wicking trust

Ask authors/readers for more resources

Background: Axon degeneration, a key pathological event in many neurodegenerative diseases and injury, can be induced by somatodendritic excitotoxin exposure. It is currently unclear, however, whether excitotoxin-induced axon degeneration is mechanistically similar to Wallerian degeneration, which occurs following axon transection, but does not involve axonal caspase activation. Results: We have used mouse primary cortical neurons at 9 days in vitro, in a compartmented culture model that allows separation of the axon from the soma, to examine the pathological cascade of excitotoxin-induced axon degeneration. Excitotoxicity induced by chronic exposure to kainic acid, resulted in axonal fragmentation, which was associated with activation of caspase-3 in the axonal compartment. To examine the role of microtubules in these events, the microtubule-stabilizing agent, taxol, was added to either the axonal or somatodendritic compartment. Our results demonstrated that microtubule stabilization of axons resulted in a significant reduction in the number of fragmented axons following excitotoxin exposure. Interestingly, taxol exposure to either the somatodendritic or axonal compartment resulted in reduced caspase-3 activation in axons, suggesting that caspase activation is a downstream event of microtubule destabilization and involves signalling from the cell soma. Conclusion: These data suggest that excitotoxin-induced axon degeneration shows some mechanistic differences to Wallerian degeneration, and that microtubule stabilization may assist in protecting nerve cells from excitotoxic effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available