4.8 Article

Hyperbolic geometry of the olfactory space

Journal

SCIENCE ADVANCES
Volume 4, Issue 8, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aaq1458

Keywords

-

Funding

  1. Aileen Andrew Foundation
  2. NSF [IIS-1254123, IOS-1724421, IOS-1556388, 1556337]
  3. NSF Ideas Lab Cracking the Olfactory Code

Ask authors/readers for more resources

In the natural environment, the sense of smell, or olfaction, serves to detect toxins and judge nutritional content by taking advantage of the associations between compounds as they are created in biochemical reactions. This suggests that the nervous system can classify odors based on statistics of their co-occurrence within natural mixtures rather than from the chemical structures of the ligands themselves. We show that this statistical perspective makes it possible to map odors to points in a hyperbolic space. Hyperbolic coordinates have a long but often underappreciated history of relevance to biology. For example, these coordinates approximate the distance between species computed along dendrograms and, more generally, between points within hierarchical tree-like networks. We find that both natural odors and human perceptual descriptions of smells can be described using a three-dimensional hyperbolic space. This match in geometries can avoid distortions that would otherwise arise when mapping odors to perception.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available