4.7 Article

A pseudo-Lagrangian method for remapping ocean biogeochemical tracer data: Calculation of net Chl-a growth rates

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
Volume 120, Issue 7, Pages 4962-4979

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015JC010898

Keywords

-

Categories

Funding

  1. National Science Foundation (NSF) [1026607]
  2. Division Of Ocean Sciences
  3. Directorate For Geosciences [1026607] Funding Source: National Science Foundation

Ask authors/readers for more resources

A key goal in understanding the ocean's biogeochemical state is estimation of rates of change of critical tracers, particularly components of the planktonic ecosystem. Unfortunately, because ship survey data are not synoptic, it is difficult to obtain spatially resolved estimates of the rates of change of tracers sampled in a moving fluid. Here we present a pseudo-Lagrangian transformation to remap data from under-way surveys to a pseudo-synoptic view. The method utilizes geostrophic velocities to back advect and relocate sampling positions, removing advection aliasing. This algorithm produces a map of true relative sampling locations, and allows for determination of the relative locations of observations acquired along streamlines, as well as a corrected view of the tracer's spatial gradients. We then use a forward advection scheme to estimate the tracer's relative change along streamlines, and use these to calculate spatially resolved, net specific rates of change. Application of this technique to Chlorophyll-a (Chl-a) fluorescence data around an ocean front is presented. We obtain 156 individual estimates of Chl-a fluorescence net specific rate of change, covering similar to 1200 km(2). After incorporating a diffusion-like model to estimate error, the method shows that the majority of observations (64%) were significantly negative. This pseudo-Lagrangian approach generates more accurate spatial maps than raw survey data, and allows spatially resolved estimates of net rates of tracer change. Such estimates can be used as a rate budget constraint that, in conjunction with standard rate measurements, will better determine biogeochemical fluxes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available