4.7 Article

Main eddy vertical structures observed in the four major Eastern Boundary Upwelling Systems

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
Volume 120, Issue 9, Pages 6008-6033

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015JC010950

Keywords

mesoscale eddies; Eastern Boundary Upwelling Systems; eddy vertical structure; altimetry; Argo floats

Categories

Funding

  1. CNES
  2. Direction Generale des Armees (DGA, France)

Ask authors/readers for more resources

In the four major Eastern Boundary Upwelling Systems (EBUS), mesoscale eddies are known to modulate the biological productivity and transport near-coastal seawater properties toward the offshore ocean, however little is known about their main characteristics and vertical structure. This study combines 10 years of satellite-altimetry data and Argo float profiles of temperature and salinity, and our main goals are (i) to describe the main surface characteristics of long-lived eddies formed in each EBUS and their evolution, and (ii) to depict the main vertical structure of the eddy-types that coexist in these regions. A clustering analysis of the Argo profiles surfacing within the long-lived eddies of each EBUS allows us to determine the proportion of surface and subsurface-intensified eddies in each region, and to describe their vertical structure in terms of temperature, salinity and dynamic height anomalies. In the Peru-Chile Upwelling System, 55% of the sampled anticyclonic eddies (AEs) have subsurface-intensified maximum temperature and salinity anomalies below the seasonal pycnocline, whereas 88% of the cyclonic eddies (CEs) are surface-intensified. In the California Upwelling System, only 30% of the AEs are subsurface-intensified and all of the CEs show maximum anomalies above the pycnocline. In the Canary Upwelling System, approximate to 40% of the AEs and approximate to 60% of the CEs are subsurface-intensified with maximum anomalies extending down to 800 m depth. Finally, the Benguela Upwelling System tends to generate approximate to 40-50% of weak surface-intensified eddies and approximate to 50-60% of much stronger subsurface-intensified eddies with a clear geographical distribution. The mechanisms involved in the observed eddy vertical shapes are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available