4.7 Article

Frictional behavior of talc-calcite mixtures

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
Volume 120, Issue 9, Pages 6614-6633

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015JB011970

Keywords

friction; talc; calcite; earthquakes; faults

Funding

  1. ERC [259256]

Ask authors/readers for more resources

Faults involving phyllosilicates appear weak when compared to the laboratory-derived strength of most crustal rocks. Among phyllosilicates, talc, with very low friction, is one of the weakest minerals involved in various tectonic settings. As the presence of talc has been recently documented in carbonate faults, we performed laboratory friction experiments to better constrain how various amounts of talc could alter these fault's frictional properties. We used a biaxial apparatus to systematically shear different mixtures of talc and calcite as powdered gouge at room temperature, normal stresses up to 50MPa and under different pore fluid saturated conditions, i.e., CaCO3-equilibrated water and silicone oil. We performed slide-hold-slide tests, 1-3000 s, to measure the amount of frictional healing and velocity-stepping tests, 0.1-1000 mu m/s, to evaluate frictional stability. We then analyzed microstructures developed during our experiments. Our results show that with the addition of 20% talc the calcite gouge undergoes a 70% reduction in steady state frictional strength, a complete reduction of frictional healing and a transition from velocity-weakening to velocity-strengthening behavior. Microstructural analysis shows that with increasing talc content, deformation mechanisms evolve from distributed cataclastic flow of the granular calcite to localized sliding along talc-rich shear planes, resulting in a fully interconnected network of talc lamellae from 20% talc onward. Our observations indicate that in faults where talc and calcite are present, a low concentration of talc is enough to strongly modify the gouge's frictional properties and specifically to weaken the fault, reduce its ability to sustain future stress drops, and stabilize slip.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available