4.5 Article

Sensitivity of flowering phenology to changing temperature in China

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES
Volume 120, Issue 8, Pages 1658-1665

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015JG003112

Keywords

-

Funding

  1. National Natural Science Foundation of China [41201078]
  2. National Science Foundation for Excellent Young Scholars of China [41322005]
  3. Program for New Century Excellent Talents in University [NCET-12-0060]

Ask authors/readers for more resources

Plant phenology is one of the preferred indicators of climate change, and its variation potentially impacts community dynamics and ecosystem functions. To better understand the responses of plants' flowering phenology to rising temperatures, we investigated the temperature sensitivity (expressed as the date of changes in phenology per change in temperature in degree Celsius, d degrees C-1) of flowering phenology for more than 220 plant species at 59 sites in China during the period 1963-1988. Our results indicated that most flowerings in China were significantly sensitive to the temperature in the 2months (60 days) prior to the flowering dates. Plants in warmer regions showed larger sensitivities to increased temperatures. Species flowering in the late spring and early summer were generally less sensitive to changing temperature than species flowering at other times of the year. For plants flowering in the spring, species that flower earlier showed higher temperature sensitivity; however, for plants flowering in the summer and autumn, species that flower earlier showed lower temperature sensitivity. The responses of the first and last flowering times to changing temperature were mostly consistent, so flowering durations were rarely (6.1%) sensitive to changing temperature. We hypothesize that plants in cold regions may have adapted to the more variable temperatures and thus showed lower temperature sensitivities than plants in warm regions. Overall, the responses of flowering phenology to temperature varied significantly among temperature zones and plant species, so it should be considered carefully when estimating the impacts of climate warming on the terrestrial biosphere.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available