4.6 Review

Underwater drag reduction by gas

Journal

FRICTION
Volume 2, Issue 4, Pages 295-309

Publisher

TSINGHUA UNIV PRESS
DOI: 10.1007/s40544-014-0070-2

Keywords

drag reduction; entrapped gas; skin friction; underwater

Funding

  1. National Natural Science Foundation of China [51375253, 51321092]

Ask authors/readers for more resources

Publications on underwater drag reduction by gas have been gathered in the present study. Experimental methods, results and conclusions from the publications have been discussed and analyzed. The stable existence of gas is a requirement for underwater drag reduction induced by slippage at the water-solid interface. A superhydrophobic surface can entrap gas in surface structures at the water-solid interface. However, many experimental results have exhibited that the entrapped gas can disappear, and the drag gradually increases until the loss of drag reduction with immersion time and underwater flow. Although some other surface structures were also experimented to hold the entrapped gas, from the analysis of thermodynamics and mechanics, it is difficult to prohibit the removal of entrapped gas in underwater surface structures. Therefore, it is essential to replenish a new gas supply for continued presence of gas at the interface for continued underwater drag reduction. Active gas supplement is an effective method for underwater drag reduction, however, that needs some specific equipment and additional energy to generate gas, which limits its practical application. Cavitation or supercavitation is a method for passive gas generation, but it is only adaptive to certain vehicles with high speed. Lately, even at low speed, the evaporation induced by liquid-gas-solid interface of a transverse microgrooved surface for continued gas supply has been discovered, which should be a promising method for practical application of underwater drag reduction by gas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available