4.1 Article

Interactive lakes in the Canadian Regional Climate Model, version 5: the role of lakes in the regional climate of North America

Journal

Publisher

CO-ACTION PUBLISHING
DOI: 10.3402/tellusa.v64i0.16226

Keywords

regional climate modelling; lake model; coupling; advanced surface parameterization

Funding

  1. Canadian Foundation for Climate and Atmospheric Sciences (CFCAS)
  2. Ministere du Developpement Economique, Innovation et Exportation (MDEIE) of Quebec Government
  3. Ouranos Consortium on Regional Climatology and Adaptation to Climate Change
  4. Natural Sciences and Engineering Research Council of Canada (NSERC)

Ask authors/readers for more resources

Two one-dimensional (1-D) column lake models have been coupled interactively with a developmental version of the Canadian Regional Climate Model. Multidecadal reanalyses-driven simulations with and without lakes revealed the systematic biases of the model and the impact of lakes on the simulated North American climate. The presence of lakes strongly influences the climate of the lake-rich region of the Canadian Shield. Due to their large thermal inertia, lakes act to dampen the diurnal and seasonal cycle of low-level air temperature. In late autumn and winter, ice-free lakes induce large sensible and latent heat fluxes, resulting in a strong enhancement of precipitation downstream of the Laurentian Great Lakes, which is referred to as the snow belt. The FLake (FL) and Hostetler (HL) lake models perform adequately for small subgrid-scale lakes and for large resolved lakes with shallow depth, located in temperate or warm climatic regions. Both lake models exhibit specific strengths and weaknesses. For example, HL simulates too rapid spring warming and too warm surface temperature, especially in large and deep lakes; FL tends to damp the diurnal cycle of surface temperature. An adaptation of 1-D lake models might be required for an adequate simulation of large and deep lakes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available