4.5 Article

Engineering evaluation of direct methane to methanol conversion

Journal

ENERGY SCIENCE & ENGINEERING
Volume 3, Issue 1, Pages 60-70

Publisher

WILEY-BLACKWELL
DOI: 10.1002/ese3.51

Keywords

Gas-to-liquids; methane; methanol; natural gas; partial oxidation

Categories

Ask authors/readers for more resources

Investigations into direct methane to methanol conversion are justified based on the avoidance of synthesis gas generation, which accounts for around 60% of the capital cost of synthesis gas to methanol conversion. A significant body of information already exists on the process chemistry, but little has been reported on the engineering of such a process. An engineering evaluation of the process was performed and the potential of this process as a platform technology for small-scale gas-to-liquids (GTL) applications was evaluated. It was found that direct methane to methanol conversion had 35% carbon efficiency and 28% thermal efficiency, which were about half of the process efficiencies of indirect methanol synthesis using synthesis gas. The poor process efficiency was mainly a consequence of the irreversible loss of carbon to COx during conversion. The direct methane to methanol process also required an air separation unit, which eroded the stated benefit of avoiding a synthesis gas generation step in the process. The utility footprint was typical of GTL processes, with large gas compression duties and cooling duties. Overall, the engineering evaluation indicated there was no benefit to employ direct methane to methanol conversion instead of indirect methanol synthesis (the industry standard), and there was no specific benefit of direct methane to methanol conversion, irrespective of scale, for GTL applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available