4.6 Article

Antibacterial Activity of TiO2 Photocatalyst Alone or in Coatings on E. coli: The Influence of Methodological Aspects

Journal

COATINGS
Volume 4, Issue 3, Pages 670-686

Publisher

MDPI
DOI: 10.3390/coatings4030670

Keywords

antibacterial activity; TiO2; photocatalysis; E. coli; transparent coating

Funding

  1. Universite Paul Sabatier Toulouse III

Ask authors/readers for more resources

In damp environments, indoor building materials are among the main proliferation substrates for microorganisms. Photocatalytic coatings, including nanoparticles of TiO2, could be a way to prevent microbial proliferation or, at least, to significantly reduce the amount of microorganisms that grow on indoor building materials. Previous works involving TiO2 have already shown the inactivation of bacteria by the photocatalysis process. This paper studies the inactivation of Escherichia coli bacteria by photocatalysis involving TiO2 nanoparticles alone or in transparent coatings (varnishes) and investigates different parameters that significantly influence the antibacterial activity. The antibacterial activity of TiO2 was evaluated through two types of experiments under UV irradiation: (I) in slurry with physiological water (stirred suspension); and (II) in a drop deposited on a glass plate. The results confirmed the difference in antibacterial activity between simple drop-deposited inoculum and inoculum spread under a plastic film, which increased the probability of contact between TiO2 and bacteria (forced contact). In addition, the major effect of the nature of the suspension on the photocatalytic disinfection ability was highlighted. Experiments were also carried out at the surface of transparent coatings formulated using nanoparticles of TiO2. The results showed significant antibacterial activities after 2 h and 4 h and suggested that improving the formulation would increase efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available