4.6 Article

Airborne GPS radio occultation refractivity profiles observed in tropical storm environments

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
Volume 120, Issue 5, Pages 1690-1709

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2014JD022931

Keywords

radio occultation; airborne observations; tropical cyclone; dropsondes

Funding

  1. HIAPER UCAR [S05-39696]
  2. NSF [SGER-0802887, AGS 1015904, AGS 1301835]
  3. NASA [NNX12AK30G]
  4. Ross Fellowship
  5. Schlumberger Faculty for the Future Fellowship
  6. NSF
  7. NASA [43468, NNX12AK30G] Funding Source: Federal RePORTER
  8. Div Atmospheric & Geospace Sciences
  9. Directorate For Geosciences [1301835] Funding Source: National Science Foundation

Ask authors/readers for more resources

Airborne GPS radio occultation (ARO) data have been collected during the 2010 PRE-Depression Investigation of Cloud systems in the Tropics (PREDICT) experiment. GPS signals received by the airborne Global Navigation Satellite System Instrument System for Multistatic and Occultation Sensing (GISMOS) are used to retrieve vertical profiles of refractivity in the neutral atmosphere. The system includes a conventional geodetic GPS receiver component for straightforward validation of the analysis method in the middle to upper troposphere, and a high-sample rate (10 MHz) GPS recorder for postprocessing complex signals that probe the lower troposphere. The results from the geodetic receivers are presented here. The retrieved ARO profiles consistently agree within similar to 2% of refractivity profiles calculated from the European Center for Medium-Range Weather Forecasting model Interim reanalyses as well as from nearby dropsondes and radiosondes. Changes in refractivity obtained from ARO data over the 5days leading to the genesis of tropical storm Karl are consistent with moistening in the vicinity of the storm center. An open-loop tracking method was implemented in a test case to analyze GPS signals from the GISMOS 10 MHz recording system for comparison with geodetic receiver data. The open-loop mode successfully tracked similar to 2 km deeper into the troposphere than the conventional receiver and can also track rising occultations, illustrating the benefit from the high-rate recording system. Accurate refractivity retrievals are an important first step toward the future goal of assimilating moisture profiles to improve forecasting of developing storms using this new GPS occultation technique.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available