4.6 Article

Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
Volume 120, Issue 12, Pages 6207-6231

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2014JD023033

Keywords

lightning; convection; aerosols; thermodynamics; radar; precipitation

Funding

  1. NASA PMM grant [NNX13AG32G]
  2. NASA [NNX13AG32G, 474929] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Convective features (CFs) observed by the Tropical Rainfall Measuring Mission satellite between 2004 and 2011 are analyzed to determine the relative roles of thermodynamics and aerosols as they modulate radar reflectivity and lightning. We studied the simultaneous impacts of normalized convective available potential energy (NCAPE) and warm cloud depth (WCD) as well as cloud condensation nuclei concentrations (D40nm; N40) on total lightning density (TLD), average height of 30dBZ echoes (AVGHT30), and vertical profiles of radar reflectivity (VPRR) within individual CFs. The results show that TLD increases by up to 600% and AVGHT30 increases by up to 2-3km with increasing NCAPE and N40 for fixed WCD. The partial sensitivities of TLD/AVGHT30 to NCAPE and N40 separately were comparable in magnitude but account for a fraction of the total range of variability (i.e., when the influences of NCAPE and N40 are considered simultaneously). Both TLD and AVGHT30 vary inversely with WCD such that maxima of TLD and AVGHT30 are found for the combination of high NCAPE, high N40, and shallower WCD. The relationship between lightning and radar reflectivity was shown to vary as a function of N40 for a fixed thermodynamic environment. Analysis of VPRRs shows that reflectivity in the mixed phase region is up to 5.0-5.6dB greater for CFs in polluted environments compared to CFs in pristine environments (holding thermodynamics fixed). This analysis favors a merged hypothesis for the simultaneous roles of thermodynamics and aerosols as they influence deep convective clouds in the Tropics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available