4.6 Article

Aerosol-cloud associations over Gangetic Basin during a typical monsoon depression event using WRF-Chem simulation

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
Volume 120, Issue 20, Pages 10974-10995

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015JD023634

Keywords

-

Funding

  1. Department of Science and Technology, India
  2. Ministry of Earth Sciences (MoES), Government of India, New Delhi
  3. Earth System Science Organization
  4. Ministry of Earth Sciences (MoES)
  5. Government of India
  6. National Center for Atmospheric Research (NCAR) Advanced Study Program
  7. U.S. National Science Foundation

Ask authors/readers for more resources

To study aerosol-cloud interactions over the Gangetic Basin of India, the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) has been applied to a typical monsoon depression event prevalent between the 23 and 29 August 2009. This event was sampled during the Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX) aircraft campaign, providing measurements of aerosol and cloud microphysical properties from two sorties. Comparison of the simulated meteorological, thermodynamical, and aerosol fields against satellite and in situ aircraft measurements illustrated that the westward propagation of the monsoon depression and the cloud, aerosol, and rainfall spatial distribution was simulated reasonably well using anthropogenic emission rates from Monitoring Atmospheric Composition and Climate project along with cityZEN projects (MACCity)+Intercontinental Chemical Transport Experiment Phase B anthropogenic emission rates. However, the magnitude of aerosol optical depth was underestimated by up to 50%. A simulation with aerosol emissions increased by a factor of 6 over the CAIPEEX campaign domain increased the simulated aerosol concentrations to values close to the observations, mainly within boundary layer. Comparison of the low-aerosol simulation and high-aerosol simulation for the two sorties illustrated that more anthropogenic aerosols increased the cloud condensing nuclei (CCN) and cloud droplet mass concentrations. The number of simulated cloud droplets increased while the cloud droplet effective radii decreased, highlighting the importance of CCN-cloud feedbacks over this region. The increase in simulated anthropogenic aerosols (including absorbing aerosols) also increased the temperature of air parcels below clouds and thus the convective available potential energy (CAPE). The increase in CAPE intensified the updraft and invigorated the cloud, inducing formation of deeper clouds with more ice-phase hydrometeors for both cases. These case studies provide evidence of aerosol-induced cloud invigoration over the Gangetic Basin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available