4.6 Article

Evaluation of error in TRMM 3B42V7 precipitation estimates over the Himalayan region

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
Volume 120, Issue 24, Pages 12458-12473

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015JD023779

Keywords

-

Ask authors/readers for more resources

Accurate precipitation measurement is crucial for weather forecasting and hydrological modeling. Tropical Rainfall Measuring Mission (TRMM) 3B42V7 satellite precipitation product offers an opportunity to monitor precipitation at high spatiotemporal resolution. However, it has several inherent errors related to observation, instrument, and rainfall retrieval algorithms. It is, therefore, essential to validate itwith ground-based measurements. We divide the region into different elevation ranges and compare 3B42V7 with India Meteorological Department gauge-based measurements, so as to observe the behavior of satellite at different altitudes. This paper evaluates error characteristics of 3B42V7 using continuous and categorical validation schemes. The analysis reveals 3100m altitude as the breakpoint for the satellite overestimating and underestimating rainfall amount for elevation ranges below and above it, respectively. It gives a poor positive correlation of similar to 0.23 between individual rainfall events, though the correlation improves (similar to 0.67) for areal-averaged precipitation values. 3B42V7 also underestimates the frequency of actual rainfall events and is not very good at identifying correct rain and no-rain events with the overall accuracy of similar to 66%. Conclusively, the satellite exhibits comparatively better performance for 1000-2000m elevations but exacerbates over higher-altitude regions. Further, we assess its capability for very heavy rainfall events using three percentile thresholds. The low-magnitude bias for 98th and 99th percentiles and high-magnitude bias for 99.99th percentile imply that 3B42V7 may not be suitable for the study of very heavy rainfall events. On the basis of these findings, it is recommended to improve satellite precipitation retrieval algorithms by incorporating topographical and local climatic factors into consideration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available