4.7 Article

Climate change projection of the Tasman Sea from an Eddy-resolving Ocean Model

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
Volume 118, Issue 6, Pages 2961-2976

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/jgrc.20202

Keywords

climate change; Tasman Sea; phytoplankton

Categories

Funding

  1. Western Australia Marine Science Institution
  2. Australian Climate Change Science Program
  3. CSIRO Wealth from Ocean Flagship

Ask authors/readers for more resources

The ocean's western boundary current regions display the greatest rate of twentieth century warming and global climate models project that the accelerated rate of warming will continue with climate change. All existing global climate change projections come from simulations that do not fully resolve either these boundary currents or their eddies. Using an Ocean Eddy-resolving Model (OEM) that captures the dynamics of the East Australian Current (EAC) and its eddies we show the response of the Tasman Sea to climate change differs from what is projected with a coarse resolution Global Climate Model (GCM). With climate change, the OEM projects increased EAC transport with increased eddy activity and an approximately 1 degrees southward latitudinal shift in the point where the EAC separates from the shelf and flows eastward. The OEM increased eddy activity in the Tasman Sea with climate change increases the nutrient supply to the upper ocean and causes an increase in the phytoplankton concentrations and primary productivity by 10% in the oligotrophic waters of the Tasman Sea. The increase in primary productivity is absent in the GCM climate change projection, which projects the region will have a decrease in primary productivity with climate change. Applying the OEM climate change projection for the Tasman Sea to other western boundary current regions suggests the projected intensification of all western boundary currents with climate change should increase eddy activity and provide an important nutrient supply mechanism to counter the increased stratification projected with global warming.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available