4.5 Article

A quantitative model for integrating landscape evolution and soil formation

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE
Volume 118, Issue 2, Pages 331-347

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011JF002296

Keywords

soil formation; landscape evolution; model; weathering; sediment export

Funding

  1. Ministry of Science and Innovation
  2. ARC Discovery project How soil grows
  3. ARC QEII Fellowship
  4. ARC project Global space-time carbon assessment
  5. Australian Research Council
  6. University of Sydney

Ask authors/readers for more resources

Landscape evolution is closely related to soil formation. Quantitative modeling of the dynamics of soils and landscapes should therefore be integrated. This paper presents a model, named Model for Integrated Landscape Evolution and Soil Development (MILESD), which describes the interaction between pedogenetic and geomorphic processes. This mechanistic model includes the most significant soil formation processes, ranging from weathering to clay translocation, and combines these with the lateral redistribution of soil particles through erosion and deposition. The model is spatially explicit and simulates the vertical variation in soil horizon depth as well as basic soil properties such as texture and organic matter content. In addition, sediment export and its properties are recorded. This model is applied to a 6.25km(2) area in the Werrikimbe National Park, Australia, simulating soil development over a period of 60,000years. Comparison with field observations shows how the model accurately predicts trends in total soil thickness along a catena. Soil texture and bulk density are predicted reasonably well, with errors of the order of 10%, however, field observations show a much higher organic carbon content than predicted. At the landscape scale, different scenarios with varying erosion intensity result only in small changes of landscape-averaged soil thickness, while the response of the total organic carbon stored in the system is higher. Rates of sediment export show a highly nonlinear response to soil development stage and the presence of a threshold, corresponding to the depletion of the soil reservoir, beyond which sediment export drops significantly.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available