4.6 Article

On the seawater temperature dependence of the sea spray aerosol generated by a continuous plunging jet

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
Volume 119, Issue 14, Pages 9052-9072

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2013JD021376

Keywords

-

Funding

  1. Swedish Research Council (Vetenskapsradet)
  2. Carlsberg Foundation [2009_01_0515]
  3. Nordic Center of Excellence on Cryosphere-Atmosphere (CRAICC)

Ask authors/readers for more resources

Breaking waves on the ocean surface produce bubbles which, upon bursting, deliver seawater constituents into the atmosphere as sea spray aerosol particles. One way of investigating this process in the laboratory is to generate a bubble plume by a continuous plunging jet. We performed a series of laboratory experiments to elucidate the role of seawater temperature on aerosol production from artificial seawater free from organic contamination using a plunging jet. The seawater temperature was varied from -1.3 degrees C to 30.1 degrees C, while the volume of air entrained by the jet, surface bubble size distributions, and size distribution of the aerosol particles produced was monitored. We observed that the volume of air entrained decreased as the seawater temperature was increased. The number of surface bubbles with film radius smaller than 2 mm decreased nonlinearly with seawater temperature. This decrease was coincident with a substantial reduction in particle production. The number concentrations of particles with dry diameter less than similar to 1 mu m decreased substantially as the seawater temperature was increased from -1.3 degrees C to similar to 9 degrees C. With further increase in seawater temperature (up to 30 degrees C), a small increase in the number concentration of larger particles (dry diameter >similar to 0.3 mu m) was observed. Based on these observations, we infer that as seawater temperature increases, the process of bubble fragmentation changes, resulting in decreased air entrainment by the plunging jet, as well as the number of bubbles with film radius smaller than 2 mm. This again results in decreased particle production with increasing seawater temperature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available