4.6 Article

Land-atmosphere coupling manifested in warm-season observations on the U.S. southern great plains

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
Volume 119, Issue 2, Pages 509-528

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2013JD020492

Keywords

-

Funding

  1. U.S. Department of Energy (USDOE) Office of Science under Atmospheric System Research (ASR) Program
  2. Lawrence Livermore National Laboratory [DE-AC52-07NA27344]

Ask authors/readers for more resources

This study examines several observational aspects of land-atmosphere coupling on daily average time scales during warm seasons of the years 1997 to 2008 at the Department of Energy Atmospheric Radiation Measurement Program's Southern Great Plains (SGP) Central Facility site near Lamont, Oklahoma. Characteristics of the local land-atmosphere coupling are inferred by analyzing the covariability of selected land and atmospheric variables that include precipitation and soil moisture, surface air temperature, relative humidity, radiant and turbulent fluxes, as well as low-level cloud base height and fractional coverage. For both the energetic and hydrological aspects of this coupling, it is found that large-scale atmospheric forcings predominate, with local feedbacks of the land on the atmosphere being comparatively small much of the time. The relatively weak land feedbacks are manifested especially by (1) the inability of soil moisture to comprehensively impact the coupled land-atmosphere energetics and (2) the limited recycling of local surface moisture under conditions where most of the rainfall derives from convective cells that originate at remote locations. There is some evidence, nevertheless, that the local land feedback becomes stronger as the soil dries out in the aftermath of precipitation events, or on days when the local boundary layer clouds are influenced by thermal updrafts associated with convection that originates at the surface. Potential implications of these results for climate-model representation of regional land-atmosphere coupling also are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available