4.6 Article

Mapping the radio sky with an interferometric network of low-frequency radio receivers

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
Volume 118, Issue 15, Pages 8390-8398

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/jgrd.50671

Keywords

atmospheric electricity; atmospheric discharges; radio receivers; interferometric network; sprites; lightning discharges

Funding

  1. Natural Environment Research Council (NERC) [NE/H024921/1]
  2. Science and Technology Facilities Council (STFC) [ST/H004793/1]
  3. Natural Environment Research Council [NE/H024921/1] Funding Source: researchfish
  4. NERC [NE/H024921/1] Funding Source: UKRI

Ask authors/readers for more resources

The structure of the 100 kHz radio sky is determined with two interferometric networks of 10 radio receivers which are distributed over local areas of approximate to 1 x 1 km(2) and approximate to 10 x 10 km(2). The radio waves arrive at individual receiver pairs with small time differences which are used to determine the arrival direction of the electromagnetic waves including both the bearing and the elevation angle. The results show that the major part of the 100 kHz radio wave energy comes from the horizon at bearings which are consistent with known locations of Long Range Navigation (LORAN) transmitters. Some part of the radio wave energy arrives from the sky at elevation angles which are consistent with the first and second sky hop waves of LORAN transmissions. A minor part of the 100 kHz radio wave energy comes from lightning discharges at distances up to approximate to 1000 km with bearings which are consistent with lightning locations reported by the arrival time difference (ATD) lightning detection network of the UK Met Office. The angular resolution for mapping the radio sky depends on the network geometry, the instrumental timing accuracy, and on the signal-to-noise ratio of the radio waves. The resulting angular resolution of the interferometric networks used in this study is approximate to 1 degrees in bearing at zero elevation and several degrees in elevation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available