4.7 Article

A Lamin-Binding Ligand Inhibits Homologous Recombination Repair of DNA Double-Strand Breaks

Journal

ACS CENTRAL SCIENCE
Volume 4, Issue 9, Pages 1201-1210

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscentsci.8b00379

Keywords

-

Funding

  1. NIH [R01CA211866]
  2. OHSU School of Medicine
  3. OHSU Office of Technology Transfer and Business Development
  4. Oregon Clinical & Translational Research Institute
  5. Oregon Medical Research Foundation
  6. Lloyd Fund
  7. [R01GM122820]
  8. [R21CA220061]

Ask authors/readers for more resources

Nuclear lamins are type V intermediate filament proteins. Lamins, including LA, LB1, LB2, and LC, are the major protein components forming the nuclear lamina to support the mechanical stability of the mammalian cell nucleus. Increasing evidence has shown that LA participates in homologous recombination (HR) repair of DNA double-strand breaks (DSBs). However, the mechanisms underlying this process are incompletely understood. We recently identified the first lamin-binding ligand 1 (LBL1) that directly binds LA and inhibited cancer cell growth. We provided here further mechanistic investigations of LBL1 and revealed that LA interacts with the HR recombinase Rad51 to protect Rad51 from degradation. LBL1 inhibits LA-Rad51 interaction leading to accelerated proteasome-mediated degradation of Rad51, culminating in inhibition of HR repair of DSBs. These results uncover a novel post-translational regulation of Rad51 by LA and suggest that targeting the LA-Rad51 axis may represent a promising strategy to develop cancer therapeutics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available