4.7 Article

The effects of solid-state phase transformation upon stress evolution in laser metal powder deposition

Journal

MATERIALS & DESIGN
Volume 87, Issue -, Pages 807-814

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2015.08.061

Keywords

Laser metal powder deposition; Residual stress; Finite element analysis; Martensitic transformation; transformation induced plasticity

Funding

  1. 973 Project of China [2011CB013403]

Ask authors/readers for more resources

To investigate the influences of solid-state phase transformation on stress evolution during multi-pass laser metal powder deposition (LMPD) process, a 3D finite-element (FE) thermo-mechanical model considering phase transformation has been established. The influences of phase transformation such as mechanical properties changes, volume change and transformation induced plasticity (TRIP) are taken into account. Furthermore, the influences of high magnitude stress upon martensitic transformation characteristic temperature and TRIP are considered. The temperature and history (microstructure) dependent material properties used in the present research are obtained by experiments. The stress field during LMPD process is analyzed with and without solid-state phase transformation, respectively. Stress measurement of X-ray diffraction (XRD) method is applied to deposited samples, and the measuring data are compared with the computational predictions. The results show that phase transformation has a dominant effect on the stress evolution, longitudinal residual stresses significantly reduced as a result of solid-state phase transformation. In addition, the effect of stresses on martensitic transformation temperature is important for accurate prediction of residual stresses (stress state after cooling of the clad to ambient temperature). Residual stresses are lower when the phase transformation temperature is reduced. (C) 2015 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available