4.7 Article

Design of submicron structures with superhydrophobic and oleophobic properties on zinc substrate

Journal

MATERIALS & DESIGN
Volume 85, Issue -, Pages 653-660

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2015.07.057

Keywords

Wettability; Hydrothermal reaction; Submicron structures; Fluorinated modification

Funding

  1. National Natural Science Foundation of China [51075184]
  2. Postgraduate Innovation Project of China University of Petroleum [YCX2014044]
  3. Fundamental Research Funds for the Central Universities [15CX06059A]

Ask authors/readers for more resources

A superhydrophobic and oleophobic surface was demonstrated on Zn substrate via a composite method using chemical etching, hydrothermal reaction, and fluorinated modification. The surface morphology with aligned ZnO rods that grew almost perpendicularly on Zn substrate and had flat hexagonal crystallographic planes played a key role in the achievement of the superhydrophobicity and oleophobicity. The Zn surface with aligned ZnO rods was then made superhydrophobic and oleophobic with maximum distilled water and peanut oil contact angles (CAs) of 152 degrees and 146 degrees, respectively, by further fluorinated modification, and the sliding angle (SA) for distilled water was less than 10 degrees. Moreover, on the basis of the classical models (Wenzel's and Cassie's model), an improved model was established to analyze the influence of the surface morphology on the wettability. The effect of the experimental parameters including the hydrothermal temperature and the concentration of the chemical etching agent on the surface morphology and the wettability were examined, and then the optimum parameters were obtained. This method is simple and inexpensive, and has potential application in depositing Zn coating that can provide both corrosion resistance and oleophobicity to the substrate metals. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available