4.7 Article

Springback simulation of advanced high strength steels considering nonlinear elastic unloading-reloading behavior

Journal

MATERIALS & DESIGN
Volume 88, Issue -, Pages 461-470

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2015.09.012

Keywords

Plasticity; Constitutive model; Nonlinear elastic unloading; Springback

Funding

  1. Canada Research Chair [202632, 215543]
  2. NARMCO Group

Ask authors/readers for more resources

The stress-strain response of some materials, such as advanced high strength steels, during unloading is nonlinear after the material has been loaded into the plastic deformation region. Upon reloading, the response shows a nonlinear elastic response that is different from that in unloading. Therefore, unloading-reloading of these materials forms a hysteresis loop in the elastic region. The Quasi-plastic-elastic model (Sun and Wagoner, 2011) was modified and combined with both isotropic-nonlinear kinematic hardening and two-surface plasticity models to simultaneously describe the nonlinear unloading response and complex cyclic response of sheet metals in the plastic region. The model was implemented as user-defined material subroutines, i.e. UMAT and VUMAT, for ABAQUS/Standard and ABAQUS/Explicit finite element codes, respectively. Uniaxial loading-unloading tests were performed on three common grades of automotive sheet steel: DP600, DP980 and TRIP780 steel. The model was verified by comparing the predicted material response with the corresponding experimental response. Finally, the model was used to predict the springback of a U-shape channel section formed in a plane-strain channel draw process. The results showed that the model was able to considerably improve springback predictions compared to the usual assumption of linear elastic unloading. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available