4.1 Article

Porosity and dielectric properties as tools to predict drug release trends from hydrogels

Journal

SPRINGERPLUS
Volume 3, Issue -, Pages -

Publisher

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1186/2193-1801-3-393

Keywords

Porosity; Impedance; Gelatin-chitosan hydrogels; Catechin; In vitro drug delivery

Funding

  1. Department of Science and Technology, Govt. of India Fast Track Project

Ask authors/readers for more resources

Conventional studies on hydrogel properties such as viscosity, pH and swelling provide information without treating the components of hydrogel, viz., water and polymer individually. Water and hydrophilic polymers need to be studied individually to understand their relationship with each other to relate their influence on drug release. In this context, we have assigned the combination of porosity and dielectric properties as tools to explore the hydrogels. Porosity and dielectric properties have been analyzed using thermoporometry and alternative current impedance measurements, respectively. A well-known hydrogel genipin cross linked gelatin-chitosan (GC) composite, with catechin as model drug has been studied. The increasing concentration of chitosan in the hydrogel composites led to increase in bound water content and incorporation of charge entrapping moieties. Controlled and medium drug release are observed for GC1 whereas the native hydrogels and composites with lower ratio of chitosan yield immediate release and composites with higher ratio effects in slow release for limited duration (9 hours) of drug delivery process. This trend of drug release is in accordance with the results obtained from porosity and dielectric properties where reduction in pore radii to lower range and increase in relaxation time of polymeric components were observed at higher concentration of chitosan. Thus, these properties can be judiciously used for predicting drug release and designing biomaterials according to it.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available