4.7 Article

Identification of DUOX1-dependent redox signaling through protein S-glutathionylation in airway epithelial cells

Journal

REDOX BIOLOGY
Volume 2, Issue -, Pages 436-446

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.redox.2013.12.030

Keywords

DUOX1; NADPH oxidase; Cell migration; Cysteine; S-glutathionylation; Proteomics

Funding

  1. National Institutes of Health [HL085646, HL079331, NCRR-COBRE P20 RR15557]
  2. Lendulet grant from the Hungarian Academy of Sciences
  3. Vermont Genetics Network through NIH Grant [8P20GM103449]

Ask authors/readers for more resources

The NADPH oxidase homolog dual oxidase 1 (DUOX1) plays an important role in innate airway epithelial responses to infection or injury, but the precise molecular mechanisms are incompletely understood and the cellular redox-sensitive targets for DUOX1-derived H2O2 have not been identified. The aim of the present study was to survey the involvement of DUOX1 in cellular redox signaling by protein S-glutathionylation, a major mode of reversible redox signaling. Using human airway epithelial H292 cells and stable transfection with DUOX1-targeted shRNA as well as primary tracheal epithelial cells from either wild-type or DUOX1-deficient mice, DUOX1 was found to be critical in ATP-stimulated transient production of H2O2 and increased protein S-glutathionylation. Using cell pre-labeling with biotin-tagged GSH and analysis of avidin-purified proteins by global proteomics, 61 S-glutathionylated proteins were identified in ATP-stimulated cells compared to 19 in untreated cells. Based on a previously established role of DUOX1 in cell migration, various redox-sensitive proteins with established roles in cytoskeletal dynamics and/or cell migration were evaluated for S-glutathionylation, indicating a critical role for DUOX1 in ATP-stimulated S-glutathionylation of beta-actin, peroxiredoxin 1, the non-receptor tyrosine kinase Sic, and MAPK phosphatase 1. Overall, our studies demonstrate the importance of DUOX1 in epithelial redox signaling through reversible S-glutathionylation of a range of proteins, including proteins involved in cytoskeletal regulation and MAPK signaling pathways involved in cell migration. (C) 2014 The Authors. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available