4.8 Article

An Internet of Things Framework for Smart Energy in Buildings: Designs, Prototype, and Experiments

Journal

IEEE INTERNET OF THINGS JOURNAL
Volume 2, Issue 6, Pages 527-537

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JIOT.2015.2413397

Keywords

Energy efficiency; intelligent buildings; Internet of Things (IoT); location-based networked control; multiscale energy-proportionality; smart energy

Ask authors/readers for more resources

Smart energy in buildings is an important research area of Internet of Things (IoT). As important parts of the smart grids, the energy efficiency of buildings is vital for the environment and global sustainability. Using a LEED-gold-certificated green office building, we built a unique IoT experimental testbed for our energy efficiency and building intelligence research. We first monitor and collect 1-year-long building energy usage data and then systematically evaluate and analyze them. The results show that due to the centralized and static building controls, the actual running of green buildings may not be energy efficient even though they may be green by design. Inspired by energy proportional computing in modern computers, we propose an IoT framework with smart location-based automated and networked energy control, which uses smartphone platform and cloud-computing technologies to enable multiscale energy proportionality including building-, user-, and organizational-level energy proportionality. We further build a proof-of-concept IoT network and control system prototype and carried out real-world experiments, which demonstrate the effectiveness of the proposed solution. We envision that the broad application of the proposed solution has not only led to significant economic benefits in term of energy saving, improving home/office network intelligence, but also bought in a huge social implication in terms of global sustainability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available