4.7 Article

Germanium tin: silicon photonics toward the mid-infrared [Invited]

Journal

PHOTONICS RESEARCH
Volume 1, Issue 2, Pages 69-76

Publisher

OPTICAL SOC AMER
DOI: 10.1364/PRJ.1.000069

Keywords

-

Categories

Ask authors/readers for more resources

Germanium tin (GeSn) is a group IV semiconductor with a direct band-to-band transition below 0.8 eV. Nonequilibrium GeSn alloys up to 20% Sn content were realized with low temperature (160 degrees C) molecular beam epitaxy. Photodetectors and light emitting diodes (LEDs) were realized from in situ doped pin junctions in GeSn on Ge virtual substrates. The detection wavelength for infrared radiation was extended to 2 mu m with clear potential for further extension into the mid-infrared. GeSn LEDs with Sn content of up to 4% exhibit light emission from the direct band transition, although GeSn with low Sn content is an indirect semiconductor. The photon emission energies span the region between 0.81 and 0.65 eV. Optical characterization techniques such as ellipsometry, in situ reflectometry, and Raman spectroscopy were used to monitor the Sn incorporation in GeSn epitaxy. (C) 2013 Chinese Laser Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available