4.7 Article

CW-pumped single-pass frequency comb generation by resonant optomechanical nonlinearity in dual-nanoweb fiber

Journal

OPTICA
Volume 1, Issue 3, Pages 158-164

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OPTICA.1.000158

Keywords

-

Categories

Funding

  1. Max Planck Society

Ask authors/readers for more resources

Recent experiments in the field of strong optomechanical interactions have focused on either structures that are simultaneously optically and mechanically resonant, or photonic crystal fibers pumped by a laser intensity modulated at a mechanical resonant frequency of the glass core. Here, we report continuous-wave (CW) pumped self-oscillations of a fiber nanostructure that is only mechanically resonant. Since the mechanism has close similarities to stimulated Raman scattering by molecules, it has been named stimulated Raman-like scattering. The structure consists of two submicrometer thick glass membranes (nanowebs), spaced by a few hundred nanometers and supported inside a 12-cm-long capillary fiber. It is driven into oscillation by a CW pump laser at powers as low as a few milliwatts. As the pump power is increased above threshold, a comb of Stokes and anti-Stokes lines is generated, spaced by the oscillator frequency of similar to 6 MHz. An unprecedentedly high Raman-like gain of similar to 4 x 10(6) m(-1) W-1 is inferred after analysis of the experimental data. Resonant frequencies as high as a few hundred megahertz are possible through the use of thicker and less-wide webs, suggesting that the structure can find application in passive mode-locking of fiber lasers, optical frequency metrology, and spectroscopy. (C) 2014 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available