4.2 Article

Nickel doping effect on the structural and optical properties of indium sulfide thin films by SILAR

Journal

OPEN CHEMISTRY
Volume 16, Issue 1, Pages 757-762

Publisher

DE GRUYTER POLAND SP ZOO
DOI: 10.1515/chem-2018-0089

Keywords

doping; thin films; optical constant; growth from solutions

Funding

  1. Mehmet Akif Ersoy University [0201-NAP-13]

Ask authors/readers for more resources

Undoped and nickel doped indium sulfide (In2S3:Ni) thin films have been deposited on indium tin oxide (ITO) coated glass substrates by successive ionic layer adsorption and reaction (SILAR) method. The doping concentration of Ni has been adjusted as 4%, 5% and 6% (in molar ratio of nickel ions to indium ions). The effects of Ni doping on the structural, morphological, compositional and optical properties of the In2S3 thin films are investigated. The x-ray diffraction patterns show that deposited film has cubic structure with amorphous nature of In2S3 and its crystallinity deteriorates with increasing doping concentration. The SEM measurements show that the surface morphology of the films is affected from the Ni incorporation. The direct band gap of the films decreases from 2.33 eV to 1.61 eV with increasing Ni dopant. Energy dispersive x-ray spectroscopy (EDS) has been used to evaluate the chemical composition and shown that S/(Ni+In) ratio in films decreases from 1.18 to 0.40 with Ni content. Optical properties of the films have been performed by a UV-Vis spectrophotometer. The direct band gap of the films decreases from 2.33 eV to 1.61 eV with increasing Ni dopant. Moreover, optical parameters of the films such as refractive index (n), extinction coefficient (k), real (epsilon(1)) and imaginary (epsilon(2)) parts of dielectric constant have been determined by using absorbance and transmittance spectra. The investigations showed that the Ni doping has a significant effect on the physical properties of SILAR produced In2S3 thin films.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available