4.3 Article

Downregulation of Rapt Gap: A Switch from DCIS to Invasive Breast Carcinoma via ERK/MAPK Activation

Journal

NEOPLASIA
Volume 20, Issue 9, Pages 951-963

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.neo.2018.07.002

Keywords

-

Categories

Funding

  1. Molecular Therapeutics program of the Karmanos Cancer Institute
  2. Wayne State University Office of the Vice-President for Research
  3. Imaging and Cytometry and Biobanking and Correlative Sciences core facilities [P30 CA022453]
  4. PHC Research Stimulation Fund
  5. [R01 CA131990]
  6. [T32 CA009531]
  7. [F31 CA213807]
  8. [R25 GM058905]
  9. [R21 CA175931]
  10. [U54CA193489]

Ask authors/readers for more resources

Diagnosis of breast ductal carcinoma in situ (DCIS) presents a challenge since we cannot yet distinguish those cases that would remain indolent and not require aggressive treatment from cases that may progress to invasive ductal cancer (IDC). The purpose of this study is to determine the role of Rap1Gap, a GTPase activating protein, in the progression from DCIS to IDC. Immunohistochemistry (IHC) analysis of samples from breast cancer patients shows an increase in Rap1Gap expression in DCIS compared to normal breast tissue and IDCs. In order to study the mechanisms of malignant progression, we employed an in vitro three-dimensional (3D) model that more accurately recapitulates both structural and functional cues of breast tissue. Immunoblotting results show that Rap1Gap levels in MCF10.Ca 1D cells (a model of invasive carcinoma) are reduced compared to those in MCF10.DCIS (a model of DCIS). Retroviral silencing of Rap1Gap in MCF10.DCIS cells activated extracellular regulated kinase (ERK) mitogen-activated protein kinase (MAPK), induced extensive cytoskeletal reorganization and acquisition of mesenchymal phenotype, and enhanced invasion. Enforced reexpression of Rap1Gap in MCF10.DCIS-RaptGapshRNA cells reduced Rap1 activity and reversed the mesenchymal phenotype. Similarly, introduction of dominant negative Rap1A mutant (Rap1A-N17) in DCIS-Rap1Gap shRNA cells caused a reversion to nonmalignant phenotype. Conversely, expression of constitutively active Rap1A mutant (Rap1A-V12) in noninvasive MCF10.DCIS cells led to phenotypic changes that were reminiscent of Rap1Gap knockdown. Thus, reduction of Rap1Gap in DCIS is a potential switch for progression to an invasive phenotype. The Graphical Abstract summarizes these findings. [GRAPHICS] .

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available