4.3 Article

Pathway-Centric Integrative Analysis Identifies RRM2 as a Prognostic Marker in Breast Cancer Associated with Poor Survival and Tamoxifen Resistance

Journal

NEOPLASIA
Volume 16, Issue 5, Pages 390-402

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.neo.2014.05.007

Keywords

-

Categories

Funding

  1. Susan Komen Foundation [PG 1221410]
  2. National Institute of Health (NIH) [U01 CA167234, HD-07857, NSFDMS-1161759]
  3. National Science Foundation (NSF) [DMS-12-28164, DMS-11617838]
  4. Cancer Prevention Research Institute of Texas [RP120092]
  5. Alkek Center for Molecular Discovery
  6. Breast Cancer Research Foundation
  7. Dan L Duncan Cancer Center [NCI-P30CA016056-32]
  8. Roswell Park Cancer Institute [PG 1221410]
  9. NCI [RP120092, P30 CA125123]
  10. [NCI P30 CA125123]
  11. Division Of Mathematical Sciences
  12. Direct For Mathematical & Physical Scien [1161759, 1545277] Funding Source: National Science Foundation

Ask authors/readers for more resources

Breast cancer (BCa) molecular subtypes include luminal A, luminal B, normal-like, HER-2-enriched, and basal-like tumors, among which luminal B and basal-like cancers are highly aggressive. Biochemical pathways associated with patient survival or treatment response in these more aggressive subtypes are not well understood. With the limited availability of pathologically verified clinical specimens, cell line models are routinely used for pathway-centric studies. We measured the metabolome of luminal and basal-like BCa cell lines using mass spectrometry, linked metabolites to biochemical pathways using Gene Set Analysis, and developed a novel rank-based method to select pathways on the basis of their enrichment in patient-derived omics data sets and prognostic relevance. Key mediators of the pathway were then characterized for their role in disease progression. Pyrimidine metabolism was altered in luminal versus basal BCa, whereas the combined expression of its associated genes or expression of one key gene, ribonucleotide reductase subunit M2 (RRM2) alone, associated significantly with decreased survival across all BCa subtypes, as well as in luminal patients resistant to tamoxifen. Increased RRM2 expression in tamoxifen-resistant patients was verified using tissue microarrays, whereas the metabolic products of RRM2 were higher in tamoxifen-resistant cells and in xenograft tumors. Both genetic and pharmacological inhibition of this key enzyme in tamoxifen-resistant cells significantly decreased proliferation, reduced expression of cell cycle genes, and sensitized the cells to tamoxifen treatment. Our study suggests for evaluating RRM2-associated metabolites as noninvasive markers for tamoxifen resistance and its pharmacological inhibition as a novel approach to overcome tamoxifen resistance in BCa.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available