4.2 Article

Improvements in serial femtosecond crystallography of photosystem II by optimizing crystal uniformity using microseeding procedures

Journal

STRUCTURAL DYNAMICS-US
Volume 2, Issue 4, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4919741

Keywords

-

Funding

  1. NIH Grant [GM055302]
  2. Office of Science, Office of Basic Energy Sciences (OBES), Division of Chemical Sciences, Geosciences, and Biosciences (CSGB) of the Department of Energy (DOE) [DE-AC02-05CH11231]
  3. DFG-Cluster of Excellence UniCat [Sfb1078]

Ask authors/readers for more resources

In photosynthesis, photosystem II (PSII) is the multi-subunit membrane protein complex that catalyzes photo-oxidation of water into dioxygen through the oxygen evolving complex (OEC). To understand the water oxidation reaction, it is important to get structural information about the transient and intermediate states of the OEC in the dimeric PSII core complex (dPSIIcc). In recent times, femtosecond X-ray pulses from the free electron laser (XFEL) are being used to obtain X-ray diffraction (XRD) data of dPSIIcc microcrystals at room temperature that are free of radiation damage. In our experiments at the XFEL, we used an electrospun liquid microjet setup that requires microcrystals less than 40 mu m in size. In this study, we explored various microseeding techniques to get a high yield of monodisperse uniform-sized microcrystals. Monodisperse microcrystals of dPSIIcc of uniform size were a key to improve the stability of the jet and the quality of XRD data obtained at the XFEL. This was evident by an improvement of the quality of the datasets obtained, from 6.5 angstrom, using crystals grown without the micro seeding approach, to 4.5 angstrom using crystals generated with the new method. (C) 2015 Author(s).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available