4.5 Review

Fatigue performance of selective laser melted Ti6Al4V components: state of the art

Journal

MATERIALS RESEARCH EXPRESS
Volume 6, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/2053-1591/aae10e

Keywords

additive manufacturing; Ti6Al4V; fatigue; fracture; selective laser melting; microstructure; residual stress

Ask authors/readers for more resources

Additive manufacturing (AM) is taking the place of traditional methods of manufacturing such as casting, because of the many advantages of this new technique, e.g. freedom in design, cost and time effective, less waste, etc. However, AM metallic products present several defects in terms of pores and surface roughness. Despite the high potential of AM, reliable mechanical properties of the manufactured parts are a prerequisite for series production and thus a need to be more deeply investigated. Among metallic materials, a combination of high fracture toughness and light weight has made Ti-6Al-4V suitable for manufacturers in the biomedical and aerospace industry. Although the monotonic stress-strain behavior of Selective Laser Melted (SLM) Ti-6Al-4V is superior to conventionally manufactured parts, this is not the case when the component is subjected to cyclic loading. Therefore, researchers and manufacturers need to take a closer look into mechanical properties of AM parts under cyclic loading. The aim of this review is to provide the state of the art in this area for the researchers and manufacturers seeking information specifically about the fatigue behavior of SLM Ti-6Al-4V components and with the aim of improving the fatigue behavior of components manufactured from Ti-6Al-4V using the SLM manufacturing process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available