4.3 Article

A novel atlas of gene expression in human skeletal muscle reveals molecular changes associated with aging

Journal

SKELETAL MUSCLE
Volume 5, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s13395-015-0059-1

Keywords

Skeletal muscle; Expression; Microarray; Aging; Mitochondrial dysfunction; Exercise

Categories

Funding

  1. Swedish Research Council Linnaeus grant: Lund University Diabetes Centre [349-2006-237]
  2. SFO Exodiab [2009-1039]
  3. European Research Council (ERC)-Advanced Researcher Grant [GA 269045]
  4. NuGo
  5. ALF
  6. Crafoord Foundation
  7. SV Skanes diabetes forening
  8. Wallenberg Foundation
  9. Novo Nordisk Foundation
  10. EXGENESIS
  11. UMAS Fonder
  12. Magn. Bergvalls Stiftelse
  13. Syskonen Svenssons Fond
  14. Swedish Diabetes Research Foundation [2009-060]
  15. Swedish research council
  16. European Community's Seventh Framework Programme (FP7)
  17. ENGAGE [HEALTH-F4-2007-201413]
  18. BBSRC [BB/G022755/1] Funding Source: UKRI
  19. Biotechnology and Biological Sciences Research Council [BB/G022755/1] Funding Source: researchfish
  20. Novo Nordisk Fonden [NNF14OC0010995] Funding Source: researchfish

Ask authors/readers for more resources

Background: Although high-throughput studies of gene expression have generated large amounts of data, most of which is freely available in public archives, the use of this valuable resource is limited by computational complications and non-homogenous annotation. To address these issues, we have performed a complete re-annotation of public microarray data from human skeletal muscle biopsies and constructed a muscle expression compendium consisting of nearly 3000 samples. The created muscle compendium is a publicly available resource including all curated annotation. Using this data set, we aimed to elucidate the molecular mechanism of muscle aging and to describe how physical exercise may alleviate negative physiological effects. Results: We find 957 genes to be significantly associated with aging (p < 0.05, FDR = 5 %, n = 361). Aging was associated with perturbation of many central metabolic pathways like mitochondrial function including reduced expression of genes in the ATP synthase, NADH dehydrogenase, cytochrome C reductase and oxidase complexes, as well as in glucose and pyruvate processing. Among the genes with the strongest association with aging were H3 histone, family 3B (H3F3B, p = 3.4 x 10(-13)), AHNAK nucleoprotein, desmoyokin (AHNAK, p = 6.9 x 10(-12)), and histone deacetylase 4 (HDAC4, p = 4.0 x 10(-9)). We also discover genes previously not linked to muscle aging and metabolism, such as fasciculation and elongation protein zeta 2 (FEZ2, p = 2.8 x 10(-8)). Out of the 957 genes associated with aging, 21 (p < 0.001, false discovery rate = 5 %, n = 116) were also associated with maximal oxygen consumption (VO2MAX). Strikingly, 20 out of those 21 genes are regulated in opposite direction when comparing increasing age with increasing VO2MAX. Conclusions: These results support that mitochondrial dysfunction is a major age-related factor and also highlight the beneficial effects of maintaining a high physical capacity for prevention of age-related sarcopenia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available