4.7 Article

Role of nitric oxide in the radiation-induced bystander effect

Journal

REDOX BIOLOGY
Volume 6, Issue -, Pages 396-400

Publisher

ELSEVIER
DOI: 10.1016/j.redox.2015.08.018

Keywords

BRCA1; DNA double-strand break; Gap junction intercellular communication; Genomic instability; Homologous recombination repair; Non-homologous end-joining; Nitric oxide; Radiation-induced bystander effect; Reactive nitrogen species

Funding

  1. American Cancer Society [IRG-73-001-37]
  2. National Institutes of Health [5R01CA090881]

Ask authors/readers for more resources

Cells that are not irradiated but are affected by stress signal factors released from irradiated cells are called bystander cells. These cells, as well as directly irradiated ones, express DNA damage-related proteins and display excess DNA damage, chromosome aberrations, mutations, and malignant transformation. This phenomenon has been studied widely in the past 20 years, since its first description by Nagasawa and Little in 1992, and is known as the radiation-induced bystander effect (RIBE). Several factors have been identified as playing a role in the bystander response. This review will focus on one of them, nitric oxide (NO), and its role in the stimulation and propagation of RIBE. The hydrophobic properties of NO, which permit its diffusion through the cytoplasm and plasma membranes, allow this signaling molecule to easily spread from irradiated cells to bystander cells without the involvement of gap junction intercellular communication. NO produced in irradiated tissues mediates cellular regulation through posttranslational modification of a number of regulatory proteins. The best studied of these modifications are S-nitrosylation (reversible oxidation of cysteine) and tyrosine nitration. These modifications can up- or down-regulate the functions of many proteins modulating different NO-dependent effects. These NO-dependent effects include the stimulation of genomic instability (GI) and the accumulation of DNA errors in bystander cells without direct DNA damage. (C) 2015 The Author. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available