4.5 Article

In vivo modulation of iNOS pathway in hepatocellular carcinoma by Nigella sativa

Journal

ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE
Volume 18, Issue 5, Pages 377-385

Publisher

SPRINGER
DOI: 10.1007/s12199-013-0336-8

Keywords

Nigella sativa ethanolic extract; Hepatocellular carcinoma; Inducible nitric oxide synthase; Nitric oxide; Tumor necrosis factor-alpha

Ask authors/readers for more resources

Nitric oxide (NO) and inducible nitric oxide synthase enzyme (iNOS) have been implicated in various tumors. Hepatocellular carcinoma is a highly aggressive form of solid tumor. The lack of effective therapy necessitates the introduction of novel therapeutic strategies to counter this disease. Nigella sativa (NS) has been shown to have specific health benefits. The aim of this study was to investigate the in vivo modulation of the iNOS pathway by NS ethanolic extract (NSEE) and the implications of this effect as an antitumor therapeutic approach against diethylnitrosamine (DENA)-induced hepatocarcinogenesis. Rats were divided into four groups, normal control, NSEE control, cancer control, and NSEE-DENA groups. The diagnosis of cancer was based on alpha-fetoprotein (AFP) levels and histological variations. Serum NO, tumor necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6) levels and serum iNOS activity were measured. Liver iNOS expression was investigated by reverse transcriptase (RT)-PCR and western blot assays. Serum AFP, NO, TNF-alpha, and IL-6 levels and iNOS enzyme activity were significantly increased in rats treated with DENA. Significant up-regulation of liver iNOS mRNA and protein expression was also observed. Subsequent treatment with NSEE significantly reversed these effects and improved the histopathological changes in malignant liver tissue which appeared after treatment with DENA, without any toxic effect when given alone. These results provide evidence that attenuation of the iNOS pathway and suppression of the inflammatory response mediated by TNF-alpha, and IL-6 could be implicated in the antitumor effect of NSEE. As such, our findings hold great promise for the utilization of NS as an effective natural therapeutic agent in the treatment of hepatocarcinogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available