4.6 Review

Current Trends in the Development of Microwave Reactors for the Synthesis of Nanomaterials in Laboratories and Industries: A Review

Journal

CRYSTALS
Volume 8, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/cryst8100379

Keywords

microwave; synthesis; high pressure; chemical reaction; reactor design; nanomaterials

Funding

  1. Institute of High Pressure Physics, Polish Academy of Sciences
  2. project CePT - European Regional Development Fund within the Operational Programme Innovative Economy for 2007-2013 [POIG.02.02.00-14-024/08]

Ask authors/readers for more resources

Microwave energy has been in use for many applications for more than 50 years, from communication, food processing, and wood drying to chemical reactions and medical therapy. The areas, where microwave technology is applied, include drying, calcination, decomposition, powder synthesis, sintering, and chemical process control. Before the year 2000, microwaves were used to produce ceramics, semiconductors, polymers, and inorganic materials; in next years, some new attempts were made as well. Nowadays, it has been found that microwave sintering can also be applied to sintered powder and ceramics and is more effective than conventional sintering. Particularly interesting is its use for the synthesis of nanomaterials. This review identifies the main sources of microwave generation, the delivery mechanisms of microwave energy, and the typical designs and configurations of microwave devices, as well as the measurement and construction material problems related to microwave technology. We focus our attention on the configurations, materials, optimized geometries, and solvents used for microwave devices, providing examples of products, especially nanoparticles and other nanomaterials. The identified microwave devices are divided into four groups, depending on the scale, the maximum pressure developed, the highest temperature for sintering, or other special multi-functions. The challenges of using microwave energy for the synthesis of nanopowders have been identified as well. The desirable characteristics of microwave reactors in the synthesis of nanostructures, as well as their superiority over conventional synthetic methods, have been presented. We have also provided a review of the commercial and self-designed microwave reactors, digestors, and sintering furnaces for technology for synthesis of nanomaterials and other industries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available