4.6 Review

Graphene Nanoplatelets-Based Advanced Materials and Recent Progress in Sustainable Applications

Journal

APPLIED SCIENCES-BASEL
Volume 8, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/app8091438

Keywords

graphene nanoplatelets; flexible electronics; wearable electronics; strain sensor; structural health monitoring; stretchable electronics; reinforced bioplastics

Ask authors/readers for more resources

Graphene is the first 2D crystal ever isolated by mankind. It consists of a single graphite layer, and its exceptional properties are revolutionizing material science. However, there is still a lack of convenient mass-production methods to obtain defect-free monolayer graphene. In contrast, graphene nanoplatelets, hybrids between graphene and graphite, are already industrially available. Such nanomaterials are attractive, considering their planar structure, light weight, high aspect ratio, electrical conductivity, low cost, and mechanical toughness. These diverse features enable applications ranging from energy harvesting and electronic skin to reinforced plastic materials. This review presents progress in composite materials with graphene nanoplatelets applied, among others, in the field of flexible electronics and motion and structural sensing. Particular emphasis is given to applications such as antennas, flexible electrodes for energy devices, and strain sensors. A separate discussion is included on advanced biodegradable materials reinforced with graphene nanoplatelets. A discussion of the necessary steps for the further spread of graphene nanoplatelets is provided for each revised field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available