4.6 Article

Engineering Properties of Controlled Low-Strength Materials Containing Bottom Ash of Municipal Solid Waste Incinerator and Water Filter Silt

Journal

APPLIED SCIENCES-BASEL
Volume 8, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/app8081377

Keywords

municipal solid waste incineration (MSWI) bottom ash; water filter silt (WFS); controlled low-strength material (CLSM)

Funding

  1. Ministry of Science and Technology of Taiwan [MOST 106-2221-E-992-331]

Ask authors/readers for more resources

The bottom ash of a municipal solid waste incinerator (MSWI) and water filter silt (WFS) were applied to a controlled low-strength material (CLSM) in the present study. The CLSM of the control group was composed of cement, water, and fine aggregates. WFS was first used as a fill material to replace 10% of the volume of natural fine aggregates in the CLSM. MSWI bottom ash was used to replace 0%, 25%, 50%, 75%, and 100% of the volume of the remaining natural fine aggregates with a water-cement ratio of 1.6. The engineering properties of freshness, hardening, and durability were examined. The results revealed that the slump flows of all of the mixture proportions ranged between 50 and 70 cm. The tube flow ranged between 20 and 30 cm, conforming to ASTM D6103 and construction regulations regarding CLSMs stipulated by the Water Resources Agency of the Ministry of Economic Affairs in Taiwan. Increases in the replacement amount of MSWI bottom ash prolonged the time required to achieve a resistance to penetration of 2.74 MPa. The diameter of the drop test ball was less than 7.6 cm, indicating that the mixture proportions had sufficient bearing capacity for successive construction. At an age of 28 d, the compressive strength did not exceed the 8.4 MPa prescribed in ASTM D4832. The ultrasonic pulse velocity and water absorption exhibited identical growth tendencies. In summary, using MSWI bottom ash to create CLSMs is feasible on the condition that the appropriate amount of WFS should be added.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available