4.6 Article

Battery Aging Prediction Using Input-Time-Delayed Based on an Adaptive Neuro-Fuzzy Inference System and a Group Method of Data Handling Techniques

Journal

APPLIED SCIENCES-BASEL
Volume 8, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/app8081301

Keywords

state of health estimation; adaptive neuron-fuzzy inference system (ANFIS); group method of data handling (GMDH); artificial neural network (ANN); electric vehicles (EVs); capacity degradation; lithium-ion battery; time-delay input

Ask authors/readers for more resources

In this article, two techniques that are congruous with the principle of control theory are utilized to estimate the state of health (SOH) of real-life plug-in hybrid electric vehicles (PHEVs) accurately, which is of vital importance to battery management systems. The relation between the battery terminal voltage curve properties and the battery state of health is modelled via an adaptive neuron-fuzzy inference system and a group method of data handling. The comparison of the results demonstrates the capability of the proposed techniques for accurate SOH estimation. Moreover, the estimated results are compared with the direct actual measured SOH indicators using standard tests. The results indicate that the adaptive neuron-fuzzy inference system with fifteen rules based on a SOH estimator has better performances over the other technique, with a 1.5% maximum error in comparison to the experimental data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available