4.7 Article

Bioorganic nanodots for non-volatile memory devices

Journal

APL MATERIALS
Volume 1, Issue 6, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4838815

Keywords

-

Funding

  1. EMBO Fellowship
  2. Ministry of Science and Technology, Israel
  3. Russian Foundation for Basic Research, the Russian Federation

Ask authors/readers for more resources

In recent years we are witnessing an intensive integration of bio-organic nanomaterials in electronic devices. Here we show that the diphenylalanine bio-molecule can self-assemble into tiny peptide nanodots (PNDs) of similar to 2 nm size, and can be embedded into metal-oxide-semiconductor devices as charge storage nanounits in non-volatile memory. For that purpose, we first directly observe the crystallinity of a single PND by electron microscopy. We use these nanocrystalline PNDs units for the formation of a dense monolayer on SiO2 surface, and study the electron/hole trapping mechanisms and charge retention ability of the monolayer, followed by fabrication of PND-based memory cell device. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available