4.5 Article

Phenyl aldehyde and propanoids exert multiple sites of action towards cell membrane and cell wall targeting ergosterol in Candida albicans

Journal

AMB EXPRESS
Volume 3, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/2191-0855-3-54

Keywords

Candida albicans; Electron microscopy; Ergosterol; Flow cytometry

Funding

  1. Indian Council of Medical Research, New Delhi

Ask authors/readers for more resources

In the present study, two phyto-compounds phenyl aldehyde (cinnamaldehyde) and propanoid (eugenol) were selected to explore their modes of action against Candida albicans. Electron microscopy, flow cytometry and spectroscopic assays were employed to determine the targets of these compounds. Treatment of C. albicans (CA04) with sub-MICs of cinnamaldehyde (50 mu g/mL) and eugenol (200 mu g/mL) indicated multiple sites of action including damages to cell walls, cell membranes, cytoplasmic contents and other membranous structures as observed under electron microscopy. Concentration and time dependent increase in the release of cytoplasmic contents accompanied with change in extracellular K+ concentration was recorded. Exposure of Candida cells at 4 x MIC of cinnaamldehyde and eugenol resulted in 40.21% and 50.90% dead cells, respectively as revealed by flow cytometry analysis. Treatment of Candida cells by cinnamaldehyde and eugenol at 0.5 x MIC showed 67.41% and 76.23% reduction in ergosterol biosynthesis, respectively. The binding assays reflected the ability of compounds to bind with the ergosterol. Our findings have suggested that the membrane damaging effects of phenyl aldehyde and propanoids class of compounds is attributed to their ability to inhibit ergosterol biosynthesis and simultaneously binding with ergosterol. Indirect or secondary action of these compounds on cell wall is also expected as revealed by electron microscopic studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available