4.6 Article

Reproducibility of Molecular Phenotypes after Long-Term Differentiation to Human iPSC-Derived Neurons: A Multi-Site Omics Study

Journal

STEM CELL REPORTS
Volume 11, Issue 4, Pages 897-911

Publisher

CELL PRESS
DOI: 10.1016/j.stemcr.2018.08.013

Keywords

-

Funding

  1. Innovative Medicines Initiative Joint Undertaking [115439]
  2. European Union
  3. NIHR (Oxford BRC)
  4. NIHR GOSH BRC
  5. Orion
  6. Daiichi Sankyo
  7. TEVA
  8. Novartis
  9. BioMarin
  10. Actelion
  11. Dipharma
  12. SOBI
  13. Genzyme
  14. BBSRC [BB/E012841/1] Funding Source: UKRI
  15. MRC [MC_PC_16034, MC_UU_12021/4, MR/R011338/1, UKDRI-3005, MR/L023784/1, MC_UP_A320_1004] Funding Source: UKRI

Ask authors/readers for more resources

Reproducibility in molecular and cellular studies is fundamental to scientific discovery. To establish the reproducibility of a well-defined long-term neuronal differentiation protocol, we repeated the cellular and molecular comparison of the same two iPSC lines across five distinct laboratories. Despite uncovering acceptable variability within individual laboratories, we detect poor cross-site reproducibility of the differential gene expression signature between these two lines. Factor analysis identifies the laboratory as the largest source of variation along with several variation-inflating confounders such as passaging effects and progenitor storage. Single-cell transcriptomics shows substantial cellular heterogeneity underlying inter-laboratory variability and being responsible for biases in differential gene expression inference. Factor analysis-based normalization of the combined dataset can remove the nuisance technical effects, enabling the execution of robust hypothesis-generating studies. Our study shows that multi-center collaborations can expose systematic biases and identify critical factors to be standardized when publishing novel protocols, contributing to increased cross-site reproducibility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available