4.5 Article

Graphene-on-Silicon Near-Field Thermophotovoltaic Cell

Journal

PHYSICAL REVIEW APPLIED
Volume 2, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.2.034006

Keywords

-

Ask authors/readers for more resources

A graphene layer on top of a dielectric can dramatically influence the ability of the material for radiative heat transfer. This property of graphene is used to improve the performance and reduce costs of near-field thermophotovoltaic cells. Instead of low-band-gap semiconductors it is proposed to use graphene-on-silicon Schottky photovoltaic cells. One layer of graphene absorbs around 90% of incoming radiation and increases the heat transfer. This strong absorption is due to the excitation of plasmons in graphene, which are automatically tuned in resonance with the emitted light in the midinfrared range. The absorbed radiation excites electron-hole pairs in graphene, which are separated by the surface field induced by the Schottky barrier. For a quasimonochromatic source the generated power is one order of magnitude larger and the efficiency is on the same level as for semiconductor photovoltaic cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available