4.6 Article

Degradation of glyoxalase I in Brassica napus stigma leads to self-incompatibility response

Journal

NATURE PLANTS
Volume 1, Issue 12, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NPLANTS.2015.185

Keywords

-

Categories

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. University of Calgary

Ask authors/readers for more resources

Self-incompatibility (rejection of 'self'-pollen) is a reproductive barrier that allows hermaphroditic flowering plants to prevent inbreeding, to promote outcrossing and hybrid vigour. The self-incompatibility response in Brassica involves allele-specific interaction between the pollen small cysteine-rich, secreted protein ligand (SCR/SP11) and the stigmatic S-receptor kinase (SRK), which leads to the activation of the E3 ubiquitin ligase ARC1 (Armadillo repeat-containing 1), resulting in proteasomal degradation of compatibility factors needed for successful pollination. Despite this, targets of ARC1 and the intracellular signalling network that is regulated by these targets, have remained elusive. Here we show that glyoxalase I (GLO1), an enzyme that is required for the detoxification of methylglyoxal (MG, a cytotoxic by-product of glycolysis), is a stigmatic compatibility factor required for pollination to occur and is targeted by the self-incompatibility system. Suppression of GLO1 was sufficient to reduce compatibility, and overexpression of GLO1 in self-incompatible Brassica napus stigmas resulted in partial breakdown of the self-incompatibility response. ARC1-mediated destruction of GLO1 after self-pollination results in increased MG levels and a concomitant increase in MG-modified proteins (including GLO1), which are efficiently targeted for destruction in the papillary cells, leading to pollen rejection. Our findings demonstrate the elegant nature of plants to use a metabolic by-product to regulate the self-incompatibility response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available