4.6 Review

Vitamin D cell signalling in health and disease

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2015.01.008

Keywords

Vitamin D; Calcium; Reactive oxygen species; Alzheimer's disease; Parkinson's disease; Schizophrenia

Ask authors/readers for more resources

Vitamin D deficiency has been linked to many human diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), hypertension and cardiovascular disease. A Vitamin D phenotypic stability hypothesis, which is developed in this review, attempts to describe how this vital hormone acts to maintain healthy cellular functions. This role of Vitamin D as a guardian of phenotypic stability seems to depend on its ability to maintain the redox and Ca2+ signalling systems. It is argued that its primary action is to maintain the expression of those signalling components responsible for stabilizing the low resting state of these two signalling pathways. This phenotypic stability role is facilitated through the ability of vitamin D to increase the expression of both Nrf2 and the anti-ageing protein Klotho, which are also major regulators of Ca2+ and redox signalling. A decline in Vitamin D levels will lead to a decline in the stability of this regulatory signalling network and may account for why so many of the major diseases in man, which have been linked to vitamin D deficiency, are associated with a dysregulation in both ROS and Ca2+ signalling. (C) 2015 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available