4.6 Review

Calmodulin and STIM proteins: Two major calcium sensors in the cytoplasm and endoplasmic reticulum

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2015.01.106

Keywords

Calmodulin; Stromal interaction molecules (STIM); EF-hand; Calcium sensing; Atomic resolution structure; Calmodulin target interactions

Funding

  1. Canadian Institutes of Health Research [MOP 13552]
  2. Heart and Stroke Foundation of Canada [G130001814, T7181]
  3. Natural Sciences and Engineering Research Council of Canada [UT493093, 201405239]
  4. Grants-in-Aid for Scientific Research [24590048] Funding Source: KAKEN

Ask authors/readers for more resources

The calcium (Ca2+) ion is a universal signalling messenger which plays vital physiological roles in all eukaryotes. To decode highly regulated intracellular Ca2+ signals, cells have evolved a number of sensor proteins that are ideally adapted to respond to a specific range of Ca-2+ levels. Among many such proteins, calmodulin (CaM) is a multi-functional cytoplasmic Ca2+ sensor with a remarkable ability to interact with and regulate a plethora of structurally diverse target proteins. CaM achieves this 'multi-talented' functionality through two EF-hand domains, each with an independent capacity to bind targets, and an adaptable flexible linker. By contrast, stromal interaction molecule-1 and -2 (STIMs) have evolved for a specific role in endoplasmic reticulum (ER) Ca2+ sensing using EF-hand machinery analogous to CaM; however, whereas CaM structurally adjusts to dissimilar binding partners, STIMs use the EF-hand machinery to self-regulate the stability of the Ca2+ sensing domain. The molecular mechanisms underlying the Ca2+-dependent signal transduction by CaM and STIMs have revealed a remarkable repertoire of actions and underscore the flexibility of nature in molecular evolution and adaption to discrete Ca2+ levels. Recent genomic sequencing efforts have uncovered a number of disease-associated mutations in both CaM and STIM1. This article aims to highlight the most recent key structural and functional findings in the CaM and STIM fields, and discusses how these two Ca2+ sensor proteins execute their biological functions. (C) 2015 Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available