4.7 Article

The Impact of Surface Ligands and Synthesis Method on the Toxicity of Glutathione-Coated Gold Nanoparticles

Journal

NANOMATERIALS
Volume 4, Issue 2, Pages 355-371

Publisher

MDPI
DOI: 10.3390/nano4020355

Keywords

glutathione; gold; nanoparticle; nanotoxicity; biocompatibility; purity; synthesis; zebrafish

Funding

  1. Oregon Health and Science University Medical Research Foundation
  2. [ES017552-01A2]
  3. [P30ES03850]
  4. [ES0166896-01]
  5. [FA8650-05-1-15041]
  6. [P30E5000210]

Ask authors/readers for more resources

Gold nanoparticles (AuNPs) are increasingly used in biomedical applications, hence understanding the processes that affect their biocompatibility and stability are of significant interest. In this study, we assessed the stability of peptide-capped AuNPs and used the embryonic zebrafish (Danio rerio) as a vertebrate system to investigate the impact of synthesis method and purity on their biocompatibility. Using glutathione (GSH) as a stabilizer, Au-GSH nanoparticles with identical core sizes were terminally modified with Tryptophan (Trp), Histidine (His) or Methionine (Met) amino acids and purified by either dialysis or ultracentrifugation. Au-GSH-(Trp) 2 purified by dialysis elicited significant morbidity and mortality at 200 mu g/mL, Au-GSH-(His) 2 induced morbidity and mortality after purification by either method at 20 and 200 mu g/mL, and Au-GSH-(Met) 2 caused only sublethal responses at 200 mu g/mL. Overall, toxicity was significantly reduced and ligand structure was improved by implementing ultracentrifugation purifications at several stages during the multi-step synthesis and surface modification of Au-GSH nanoparticles. When carefully synthesized at high purity, peptide-functionalized AuNPs showed high biocompatibility in biological systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available