4.5 Article

Aqueous synthesis and biostabilization of CdS@ZnS quantum dots for bioimaging applications

Journal

MATERIALS RESEARCH EXPRESS
Volume 2, Issue 10, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/2053-1591/2/10/105401

Keywords

qunatum dot; cellulose nanocrystal; nanomaterial

Funding

  1. CelluForce
  2. AboraNano
  3. CFI
  4. NSERC

Ask authors/readers for more resources

Bionanohybrids, combining biocompatible natural polymers with inorganic materials, have aroused interest because of their structural, functional, and environmental advantages. In this work, we report on the stabilization of CdS@ZnS core-shell quantum dots (QDs) using carboxylated cellulose nanocrytals (CNCs) as nanocarrieers in aqueous phase. The high colloidal stability was achieved with sufficient negative charge on CNC surface and the coordination of Cd2+ to carboxylate groups. This coordination allows the in-situ nucleation and growth of QDs on CNC surface. The influences of QD to CNC ratio, pH and ZnS coating on colloidal stability and photoluminescence property of CNC/QD nanohybirds were also studied. The results showed that products obtained atpH 8 with a CdS to CNC weight ratio of 0.19 and a ZnS/CdS molar ratio of 1.5 possessed excellent colloidal stability and highest photoluminescence intensity. By anchoring QDs on rigid bionanotemplates, CNC/CdS@ZnS exhibited long-term colloidal and optical stability. Using biocompatible CNC as nanocarriers, the products have been demonstrated to exhibit low cytotoxicity towards HeLa cells and can serve as promising red-emitting fluorescent bioimaging probes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available