4.4 Article

Focus Formation: A Cell-based Assay to Determine the Oncogenic Potential of a Gene

Journal

JOVE-JOURNAL OF VISUALIZED EXPERIMENTS
Volume -, Issue 94, Pages -

Publisher

JOURNAL OF VISUALIZED EXPERIMENTS
DOI: 10.3791/51742

Keywords

Medicine; Issue 94; oncogene; focus formation; foci; retrovirus; NIH 3T3; Platinum-E; ecotropic; pBABEpuro

Funding

  1. NIH Director's New Innovator Award Program
  2. National Cancer Institute
  3. National Science Foundation

Ask authors/readers for more resources

Malignant transformation of cells is typically associated with increased proliferation, loss of contact inhibition, acquisition of anchorage-independent growth potential, and the ability to form tumors in experimental animals(1). In NIH 3T3 cells, the Ras signal transduction pathway is known to trigger many of these events, what is known as Ras transformation. The introduction of an overexpressed gene in NIH 3T3 cells may promote morphological transformation and loss of contact inhibition, which can help determine the oncogenic potential of that gene of interest. An assay that provides a straightforward method to assess one aspect of the transforming potential of an oncogene is the Focus Formation Assay (FFA)(2). When NIH 3T3 cells divide normally in culture, they do so until they reach a confluent monolayer. However, in the presence of an overexpressed oncogene, these cells can begin to grow in dense, multilayered foci(1) that can be visualized and quantified by crystal violet or Hema 3 staining. In this article we describe the FFA protocol with retroviral transduction of the gene of interest into NIH 3T3 cells, and how to quantify the number of foci through staining. Retroviral transduction offers a more efficient method of gene delivery than transfection, and the use of an ecotropic murine retrovirus provides a biosafety control when working with potential human oncogenes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available